An algorithm for the rota straightening formula
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Straightening Formula for Quantized Codeterminants
0. Introduction J.A. Green 6, x4] introduces codeterminants, which are products of pairs of natural basis elements of the Schur algebra S(n; r). These are shown to be parametrised by pairs of row-semistandard tableaux of shape , where 2 (n; r). If both the tableaux are standard, and the composition is dominant, then the codeterminant is said to be standard. The set of standard codeterminants fo...
متن کاملA straightening algorithm for row-convex tableaux
We produce a new basis for the Schur and Weyl modules associated to a row-convex shape D. The basis is indexed by new class of \straight" tableaux which we introduce by weakening the usual requirements for standard tableaux. Spanning is proved via a new straightening algorithm for expanding elements of the representation into this basis. For skew shapes, this algorithm specializes to the classi...
متن کاملAn Optimal Parallel Algorithm for Formula Evaluation
A new approach to Buss’s NC algorithm [Bus87] for evaluation of Boolean formulas is presented. This problem is shown to be complete for NC over AC reductions. This approach is then used to solve the more general problem of evaluating arithmetic formulas using arithmetic circuits.
متن کاملAnother short proof of the Joni-Rota-Godsil integral formula for counting bipartite matchings
How many perfect matchings are contained in a given bipartite graph? An exercise in Godsil’s 1993 Algebraic Combinatorics solicits proof that this question’s answer is an integral involving a certain rook polynomial. Though not widely known, this result appears implicitly in Riordan’s 1958 An Introduction to Combinatorial Analysis. It was stated more explicitly and proved independently by S.A. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1980
ISSN: 0012-365X
DOI: 10.1016/0012-365x(80)90062-x